What is the overall infection fatality ratio (IFR) of #SARSCoV2 in Germany? The widely discussed Gangelt study now got published in @NatureComms. There are a number of issues with its estimate of the IFR. A thread. (1/n) nature.com/articles/s4146…
What do we already know about the IFR in Germany? At @ISPMBern, we published a modeling study that estimates the IFR at 0.8% (95% CI: 0.5%-1.1%) for Bavaria and 0.7% (95% CI: 0.5%-1.3%) for Baden-Württemberg based on 1,049 and 802 deaths. (2/n) journals.plos.org/plosmedicine/a…
The IFR can also be estimated from seroprevalence studies. A recently published report from Munich (Bavaria) found an IFR of 0.8% (0.6%-1.1%), confirming our earlier estimates. (3/n) klinikum.uni-muenchen.de/Abteilung-fuer…
So let's have a look at the Gangelt paper. In general, this is a well done study investigating an early outbreak of #SARSCoV2 in a small community of 12,597 people. They estimate an infection attack rate of 15.5% corresponding to 1,956 people. (4/n)
Then, they estimate the IFR based on 7 deaths (7/1956 = 0.36%). You might say: Wait, what? How can you estimate an IFR based on 7 deaths only? Doesn't chance come into play here? You're right. With such a small number of deaths, you can't get precise estimates of the IFR. (5/n)
Assuming binomial sampling, one obtains a 95% CI of 0.14%-0.74%. While the authors report such a CI in the main text, they hide it for the numbers in the abstract. What is the rationale of presenting numbers with a precision that does not exist? This is somewhat concerning (6/n)
But there is more. According to this article from @hfeldwisch, they did not include all deaths that stem from infections up until the end of the study period. Instead of 7, there were probably 13 deaths. (7/n) medwatch.de/2020/11/26/die…
This would result in an IFR of 13/1956 = 0.66% (95% CI: 0.35%-1.13%). That's interesting, because this estimate is in good agreement with the results from our statistical modeling study and the seroprevalence study from Munich. (8/n)
While that's an interesting turn of events, I still would not put too much trust into an IFR from such a small community and with such a small number of deaths. Especially when there are much bigger studies around that are based on hundreds or thousands of deaths. (9/n)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Christian Althaus

Christian Althaus Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @C_Althaus

19 Nov
Our statistical tool to analyze the epidemic trends of #SARSCoV2 in Switzerland is now online. (1/n) @ISPMBern @unibern @ETH @SwissScience_TF ibz-shiny.ethz.ch/covidDashboard/
In the current situation, it is critically important to follow the epidemic trends of #SARSCoV2 across age groups and cantons. Changes in the number of daily confirmed cases, hospitalizations, ICU occupancy and deaths can all provide meaningful insights. (2/n)
One can fit a negative binomial generalized linear model (glm.nb in R) to the data with reported numbers as a response variable and date and weekend as predictors. This allows to estimate the exponential increase or decrease of the different indicators of the epidemic. (3/n)
Read 11 tweets
15 Nov
The @SwissScience_TF proposes to halve confirmed #SARSCoV2 cases every two weeks to reach less than 500 cases in January. What does this mean regarding the reproduction number? A thread about doubling times and half-lifes of #SARSCoV. (1/n)
The figure (in German) shows the relationship between the reproduction number and the time in which the number of new #SARSCoV infections double (red) and reduce by 50% (green). (2/n)
In early March 2020, the virus spread uncontrolled in Switzerland with a reproduction number of 2.8 which corresponds to a doubling time of 3 days. (3/n)
Read 13 tweets
14 Nov
Die @SwissScience_TF schlägt vor, dass wir die Fallzahlen alle zwei Wochen halbieren, um im Januar wieder auf unter 500 täglich bestätigte Fällen zu gelangen. Was bedeutet das bezüglich der Reproduktionszahl? Ein Thread zu Verdoppelungs- und Halbwertszeiten bei #SARSCoV2. (1/n)
Die Grafik zeigt den Zusammenhang zwischen der Reproduktionszahl und der Zeit in welcher sich die Anzahl Neuinfektionen von #SARSCoV2 verdoppeln (rot) bzw. halbieren (grün). (2/n)
Anfang März 2020 konnte sich das Virus in der Schweiz unkontrolliert ausbreiten, was einer Reproduktionszahl von 2,8 und einer Verdoppelungszeit von 3 Tagen entsprach. (3/n)
Read 13 tweets
1 Nov
Reichen die seit 29. Oktober geltenden Massnahmen um eine Überlastung des Gesundheitswesens zu verhindern und die Anzahl Neuinfektionen mit #SARSCoV2 wieder auf ein überschaubares Niveau zu bringen? Thread über die zentrale Rolle einer frühzeitigen Einführung von Massnahmen. 1/n
Am 9. Oktober publizierte die @SwissScience_TF eine Beurteilung des raschen Anstiegs der Zahl der positiv auf #SARSCoV2 getesteten Personen in der Schweiz. 2/n ncs-tf.ch/de/policy-brie…
Der Bericht wies darauf hin, dass die Testpositivität über die letzen sieben Tage bereits 7% betrug, was über dem von der @WHO empfohlenen Grenzwert von 5% lag. 3/n
Read 11 tweets
28 Oct
@eggersnsf @SGruninger @slwirth @beftwi @EberhartSusanne @SwissScience_TF @marcelsalathe_d @eggersnf Auch wenn ich nicht mit allen Aussagen einverstanden bin, fand ich den Artikel interessant. Er zeigt auf, dass die @SwissScience_TF vor der jetzigen Situation gewarnt hat, aber einzelne Wissenschaftler auch andere Einschätzungen abgegeben haben.
@eggersnsf @SGruninger @slwirth @beftwi @EberhartSusanne @SwissScience_TF @marcelsalathe_d @eggersnf So zeigt er auf, dass es bei der Wissenschaft eben nicht um einzelne Meinungen geht, sondern um einen Konsens.
@eggersnsf @SGruninger @slwirth @beftwi @EberhartSusanne @SwissScience_TF @marcelsalathe_d @eggersnf Der Vergleich mit dem Würfelspiel zeigt für mich auf, warum eine zwischenzeitliche “Stabilisierung” der Lage noch nichts bedeutet, und wieso der rasche Anstieg im Oktober zwar erwartet worden war, aber vielleicht nicht in dieser Stärke.
Read 6 tweets
28 Oct
Mir fällt auf, dass nach wie vor Schwierigkeiten bestehen, die täglich gemeldeten Zahlen des @BAG_OFSP_UFSP zu #COVID19 richtig zu interpretieren. Ein Thread. (1/n)
Laborbestätigte Fälle: Die täglich gemeldeten Fälle beziehen sich meist auf Tests welche während den letzten drei Tagen durchgeführt wurden (orange Balken in den Grafiken des @BAG_OFSP_UFSP). (2/n)
Das bedeutet, dass wir die tatsächliche Anzahl laborbestätigter Fälle der letzten 2-3 Tage noch nicht kennen, und daraus keinen Trend ableiten können. (3/n)
Read 10 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!