C'est le week-end !

Peut-être aurez vous le temps de lire mes dernières publications.

Au programme :
> Régression Logistique
> Matrice de confusion
> Binary tree : Gini vs Entropy
> Transformers et self Attention
> Les réseaux à convolution

Bonne lecture !

🔽🔽 Thread
[Régression Logistique]

Voir différemment cet algorithme et tout comprendre grâce à la géométrie

#datascience #machinelearning #ia

[Matrice de Confusion]

Plus jamais confus (!) par la matrice de confusion grâce à ce truc très simple à retenir

#datascience #machinelearning #iA

[Les arbres binaires]

Piliers du machine learning, c'est l'occasion de revenir sur la manière dont ils sont construits.

Vous êtes plutôt Team GINI ou team ENTROPY ?

#datascience #machinelearning #ia

[Les réseaux à convolution]

On revoit ensemble les principes des #CNN, réseaux à convolution qui ont révolutionné l'IA (et qui continuent encore à secouer tout le secteur) ?

#datascience #machinelearning #ia

[Les transformers et le self-attention pour le #NLP]

S'il y a bien un domaine qui fait autant le buzz actuellement qu'il est mal compris, c'est bien celui-la.

Allez, on reprend les choses pas à pas ...

#datascience #machinelearning #iA

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Objectif Data Science - avec Vincent

Objectif Data Science - avec Vincent Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ObjectifDataSci

23 Apr
1. Hello. Aujourd'hui, je m'attaque à un gros morceau

Les transformers

en particulier la partie self-attention qui en constitue la partie la plus intéressante

Après avoir lu ce thead, j'espère que vous aurez compris les mécanismes en jeu

Ready?

#MachineLearning #DataScience
2. Je vais détailler le fonctionnement des transformers dans le contexte du NLP, qui est le domaine où le premier papier a été publié en 2017 ("Attention is all you need")

A noter que les transformers s'attaquent désormais à d'autres domaines (Vision, Time Series, ...)
3. First things first

Rappelons que dans le NLP, les algorithmes ne comprennent pas "directement" les mots

Il faut que ces mots soient transformés en nombres.

C'est le boulot des algorithmes de "word embedding", qui donc transforment les mots en vecteurs de nombres
Read 37 tweets
21 Apr
1. Hello les copains

Etes-vous confus devant une matrice de confusion ?

Vous n'arrivez pas à retenir ce que sont les indicateurs "precision", "recall", "accuracy" ?

Je pense que ce thread devrait vous aider.

🔽🔽 Thread

#datascience #MachineLearning #iA
2. Personnellement, ces notions autour de la matrice de confusion, j'ai mis un bon bout de temps avant de les retenir une fois pour toute.

Et pour retenir tout ça, j'ai un super moyen mnémotechnique que je vais vous donner.

Ready?
3. D'abord de quoi parle-t-on ?

On parle de résultats d'une classification faite par un modèle de Machine Learning (Regression logistique, SVM, RF, KNN, Réseau de neurones, Naive Bayes ... et j'en passe)
Read 29 tweets
21 Apr
1. Hello les copains.

Aujourd'hui on va parler de réseaux de neurones, et en particulier de réseaux de neurones à convolutions.

On va se concentrer surtout sur les filtres à convolutions qui constituent les paramètres d'un #CNN

🔽🔽Thread

#datascience #machinelearning #ia
2. Ce tweet sera l'occasion de revoir les grands principes qu'il y a derrière un tel réseau de neurones.

C'est important de comprendre les rouages qu'il y a derrière tout cela.
3. Pour commencer, on peut dire que "l'hiver de l'IA" s'est terminé grâce aux progrès spectaculaires de cette dernière décennie permis grâce aux CNN.

C'est grâce à leur performance que le monde s'est de nouveau intéressé à ces technologies
Read 39 tweets
20 Apr
Hello,

pour vous y retrouver plus facilement, j'ai rangé ici les Tweets qui donnent accès aux différents threads publiés.

Au programme : tout plein de choses sur le #MachineLearning, la #data, la #datascience, l'#IA et la programmation #Python.

Merci pour vos Like ou vos RT !
La régression Logistique : une autre façon de bien comprendre comment cela fonctionne.

Read 6 tweets
20 Apr
1. Salut les copains

Aujourd'hui on va parler d'un modèle tellement important dans le Machine Learning - Les arbres binaires !

On va voir comment ils sont construits et on va voir également une interprétation géométrique

#datascience #ia #MachineLearning
2. Pour commencer, les arbres binaires sont vieux comme le Machine Learning

C'est un type de modèle qui a constamment évolué, et qui est à la base de modèles phare du moment

Comme les #RandomForest, les #GradientBoosting comme #AdaBoost, #CatBoost, #XGBoost, ...
3. Promis, on verra chacun de ces modèles dans le détail dans des messages dédiés
Read 37 tweets
20 Apr
Salut les copains.

Aujourd'hui, on va parler de régression logistique. Un modèle de ML que tout le monde connait.

Mais je vais faire une approche assez originale.

Ready?

🔽🔽Thread

#datascience #ia #MachineLearning
1/ Petit rappel : la régression logistique permet de faire de la classification entre 2 catégories.

C'est un modèle performant et TRES TRES utilisé à travers le monde.
2/ Exemple de cas d'usage :

> une banque donne un prêt (ou pas)

> le médecin détecte cette maladie (ou pas)

> le site ecommerce propose ce produit au client (ou pas)

> le client se désabonne du service (ou pas)
Read 41 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!