🌎 ¡Acabo de encontrar una serie de mapas increíbles realizados con #RStats! Desde mapas interactivos hasta diseños 3D, hay algo para todos los amantes de los datos espaciales
👇 ¡8 cuentas a las que definitivamente vale la pena darle un vistazo!🧵 #dataviz#maps#geospatial#gis
🧐 Si quieres gráficos rápidos, elegantes y sin sufrir, prueba {tinyplot}🔥
✅ Gráficos en base R sin complicaciones
✅ Agrupaciones y leyendas automáticas en un solo paso
✅ Facetas sin sudar la gota gorda (olvídate de par(mfrow=...))
✅ Temas personalizables con un solo comando
📌 ¿Por qué deberías probar tinyplot?
1️⃣ Usa solo base R → sin dependencias, sin bloat.
2️⃣ Ultra ligero → instalación mínima, ideal para paquetes o scripts portables.
3️⃣ Drop-in replacement → si ya usas plot(), cambiar a tinyplot() es pan comido.
🎯 ¡Prueba esto AHORA MISMO en tu R! 🎯
install.packages("tinyplot")
library(tinyplot)
🚀🔮✨ATENCIÓN, DETECTIVES DE DATOS ✨🔮🚀
😉 Porque aprender programación también puede hacerse de forma práctica y entretenida, hoy te traigo un desafío que pondrá a prueba tus conocimientos de R y tidyverse: la adaptación del SQL Murder Mystery. 🔎
🕵🏻♂️ Este ejercicio interactivo te convertirá en un detective de datos que debe resolver un crimen analizando bases de datos policiales. Originalmente fue diseñado para SQL por pero aquí lo abordaremos utilizando R y tidyverse.
♻️ Adaptación de Naidoo (2019) y Goyal (2024).
✨ LO QUE VAS A HACER
🧐 Dominar el manejo de datos en R mientras resuelves un caso policíaco 😎
🔮 Explorar bases de datos
🛡️ Rastrear pistas clave para acercarte al culpable
💪 Usar R y tidyverse para realizar consultas, filtrar datos y descubrir patrones ocultos.
🔥¿10 CASOS POR VARIABLE?🔥
Si has escuchado que necesitas 10 eventos por variable (EPV) para hacer una regresión logística, te tengo noticias... ¡Ese criterio es una trampa!🚨 Hoy te explico por qué confiar en esta regla puede arruinar tus análisis y qué puedes hacer en su lugar
🤔 ¿Por qué se usa el criterio de 10 EPV?
👉 Es fácil de recordar y aplicar.
👉 Se ha usado en miles de estudios.
👉 Parece "una buena regla general".
🔥 EDA Automático con R y Python 🔥
👀 El EDA es clave al trabajar con datos, ayuda a comprender y preparar los datos antes de modelar. R y Python ofrecen herramientas automáticas, pero ¡usa siempre con responsabilidad y ética! 🚨
#DataScience #RStats #Python #stats #dataviz
🚀 ¿Por qué realizar un EDA automático?
🔧 Herramientas para EDA Automático
En R:
DataExplorer
dataMaid
SmartEDA
skimr
GGally
En Python:
pandas_profiling
sweetviz
Dython
ydata-profiling
dtale
autoviz
📢 Guía práctica para la inferencia estadística 📊
La inferencia estadística es fundamental para analizar datos y tomar decisiones informadas. Sin embargo, elegir el método correcto puede ser un desafío. Aquí tienes algunas estrategias clave para 5 problemas comunes:🧵👇
#stats
🔍 1. Comparación de medias en datos no Normales pero población simétrica y unimodal:
❌ No confíes en n > 30
❌ No uses Wilcoxon, ya que cambia la hipótesis nula
✅ Usa pruebas t de Welch por permutación o con bootstrap
✅ Con valores atípicos, prueba Yuen-Welch por permutación
📐 2. Comparación de medianas
Las pruebas Mann-Whitney o Kruskal-Wallis:
❌ No comparan medianas sin IID y simetría.
❌ No permiten análisis con múltiples factores o covariables
✅ Usa regresión cuantílica o prueba Mood-Brown
✅ Usa regresión logística ordinal o ART-ANOVA
🔥🤖 IA en #RStats: Opciones y Precauciones🧠📊
Desde hace un tiempo, vengo explorando cómo utilizar la IA para programar en R: ¿Podría ser un cambio interesante? ¿Qué hay que tener en cuenta? ¿Qué opciones hay? Dejo algunas de mis reflexiones para que compartamos experiencias.🧵
La IA puede ser útil, pero también puede generar código incorrecto, reforzar sesgos y fomentar la dependencia. Usarla con responsabilidad implica verificar, interpretar y contextualizar, no aceptar ciegamente sus sugerencias. 🚦
#IA #CódigoSeguro #stats #RStats
🤔¿Qué se espera de la IA? Permitir escribir código más rápido, reducir errores mediante asistencia en depuración y explicación del código, enfocarnos más en el análisis en lugar de en la sintaxis; pero esto siempre y cuando no nos vuelva menos críticos con nuestro propio código.