Regressors
Classifiers
Clusterers
Transformers
Meta-estimators
Read their exact definition in the glossary scikit-learn.org/stable/glossar…
They all follow the same three-step process - import, instantiate, fit
# Regressor
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X, y)
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(X, y)
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso
lasso = Lasso()
grid = {'alpha': [.001, .01, .1, 1, 10]}
gs = GridSearchCV(lasso, grid)
gs.fit(X, y)