, 6 tweets, 2 min read Read on Twitter
This is how you implement a network in Chainer. Chainer, the original eager-first deep learning framework, has had this API since launch, in mid-2015.

When PyTorch got started, it followed the Chainer template (in fact, the prototype of PyTorch was literally a fork of Chainer).
Nearly every day, I am getting ignorant messages saying, "PyTorch is an original innovation that TensorFlow/Keras copied". This is incorrect. Subclassing is a fairly obvious way to do things in Python, and Chainer had this API first. Many others followed.
I had been looking at adding a Model subclassing API to Keras as soon as late 2015 (before the Functional API even existed, and over a year before being aware of PyTorch), inspired by Chainer. Our first discussions about adding an eager execution mode also predate PyTorch.
By the time PyTorch came out, I had been looking at its API (which is exactly the Chainer API) for 1.5 year (since the release of Chainer). It wasn't exactly a shock. There was nothing we didn't already know.
To be clear, it's a good thing that API patterns and technical innovations are cross-pollinating among deep learning framework. The Keras API itself has a had a pretty big influence over libraries that came after. It's completely fine, and it all benefits end users.
But please stop saying, "TensorFlow/Keras copied PyTorch". It's an extremely ignorant take, not only false but also pretty offensive (especially to the Chainer folks).
Missing some Tweet in this thread?
You can try to force a refresh.

Like this thread? Get email updates or save it to PDF!

Subscribe to François Chollet
Profile picture

Get real-time email alerts when new unrolls are available from this author!

This content may be removed anytime!

Twitter may remove this content at anytime, convert it as a PDF, save and print for later use!

Try unrolling a thread yourself!

how to unroll video

1) Follow Thread Reader App on Twitter so you can easily mention us!

2) Go to a Twitter thread (series of Tweets by the same owner) and mention us with a keyword "unroll" @threadreaderapp unroll

You can practice here first or read more on our help page!

Follow Us on Twitter!

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just three indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3.00/month or $30.00/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!